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Abstract
Forecasting is an important task across several domains. Its generalised interest is related
to the uncertainty and complex evolving structure of time series. Forecasting methods are
typically designed to cope with temporal dependencies among observations, but it is widely
accepted that none is universally applicable. Therefore, a common solution to these tasks is to
combine the opinion of a diverse set of forecasts. In this paper we present an approach based
on arbitrating, in which several forecasting models are dynamically combined to obtain pre-
dictions. Arbitrating is ametalearning approach that combines the output of experts according
to predictions of the loss that theywill incur.We present an approach for retrieving out-of-bag
predictions that significantly improves its data efficiency. Finally, since diversity is a funda-
mental component in ensemble methods, we propose a method for explicitly handling the
inter-dependence between experts when aggregating their predictions. Results from exten-
sive empirical experiments provide evidence of the method’s competitiveness relative to state
of the art approaches. The proposed method is publicly available in a software package.
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1 Introduction

Time series is an important topic in several research communities. The generalised interest in
time series arises from the dynamic characteristics of many real-world phenomena. Uncer-
tainty is a major issue in these problems, which complicates the exact understanding of their
future behaviour. This is the key motivation for the study of forecasting methods.

Organisations across a wide range of domains rely on forecasting as a decision support
tool. For example, financial analysts forecast the behaviour of stock prices for economic
profit. Intelligent transportation systems forecast the short-term traffic flow to enhance the
operational efficiency in road networks.

In the last few decades the research community produced a considerable number of contri-
butions on forecasting methods. These have been designed to cope with the time dependency
of the data. Time series often comprise non-stationarities and time evolving complex struc-
tures, also known as concept drift (Gama et al. 2014), which hamper the forecasting process.

One of the most common approaches to forecasting is the dynamic combination of several
experts, i.e., dynamic ensemble methods. Ensemble methods have been shown to provide a
superior predictive performance relative to single learning algorithms (Brown et al. 2005).
Notwithstanding, selecting the weights of each individual expert in the combination rule is
known to be a difficult task.

The state of the art approaches for dynamically combining experts for forecasting are
mostly based on estimates of predictive performance. The loss of each expert is tracked over
time and used to combine them in an adaptive way. Some of these approaches have interesting
theoretical loss upper bounds based on regret minimisation (Cesa-Bianchi and Lugosi 2006).

Metalearning approaches are also commonly used. For example stacking (Wolpert 1992),
which directlymodels inter-dependencies between experts. This characteristicmay be impor-
tant to take into account the diversity among experts, which is a key component in ensemble
learning (Brown et al. 2005).

In this paper we present a metalearning strategy to combine the available forecasting
models in an adaptive way. However, contrary to stacking, we separatelymodel the individual
expertise of each forecasting model and specialise them across the time series. Consequently,
the forecasting models are combined in such a way that they are only selected for predicting
examples that they are expected to be good at. Moreover, as opposed to tracking the error on
past instances, our combination approach is more proactive as it is based on predictions of
future loss of models. This can result in a faster adaptation to changes in the environment.

The motivation for our approach is that different learning models have different areas of
expertise across the input space. In time series forecasting there is evidence that forecast-
ing models have a varying relative performance over time (Aiolfi and Timmermann 2006).
Moreover, it is also common for the underlying process generating the time series to have
recurrent structures due to factors such as seasonality (Gama and Kosina 2014). In this con-
text, we hypothesise that the arbitrage metalearning strategy enables the ensemble to better
detect changes in the relative performance of models or changes between different regimes
and quickly adapt itself to the environment.

The proposed metalearning strategy, hereby denoted as Arbitrated Dynamic Ensemble
(ADE), is based on arbitrating (Ortega et al. 2001), a method from the family of mixture of
experts (Jacobs et al. 1991). A meta-learner is created for each base-learner that is part of the
ensemble. Each meta-learner is specifically designed to model how apt its base counterpart
is to make a prediction for a given test example. This is accomplished by analysing how the
error incurred by a given learning model relates to the characteristics of the data. At test time,
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Fig. 1 Workflow of ADE for a new prediction. The base-learners M produce the predictions ŷi , i ∈ {1, . . . ,m}
for the next value of the time series. In parallel, the meta-learners Z produce the weights wi of each base-
learner according to the predictions of their error (êi ). The final prediction ŷ is computed using a weighted
average of the predictions relative to the weights

the base-learners are weighted according to their expected degree of competence in the input
observation, estimated by the predictions of the meta-learners. This is illustrated in Fig. 1.

While a given base-learner Mi is trained to model the future values of the time series,
its metalearning associate Zi is trained to model the error of Mi . The arbiter Zi then can
make predictions regarding the error that Mi will incur when predicting the future values of
the time series. The larger the estimates produced by Zi (relative to the other models in the
ensemble) the lower the weight of Mi will be in the combination rule.

Diversity among the experts is a fundamental component in building ensemble meth-
ods (Brown et al. 2005). We start by addressing this issue implicitly, by using experts
with different learning strategies, i.e. heterogeneous ensembles. Our assumption is that the
ensemble heterogeneity is useful to cope with the different dynamic regimes of time series.
Besides heterogeneity we encourage diversity explicitly during the aggregation of the out-
put of experts. This is achieved by taking into account not only predictions of performance
produced by the arbiters, but also the correlation among experts in a recent window of obser-
vations.

We validate the proposedmethod in 62 real-world time series. Empirical experiments sug-
gest that ourmethod is competitivewith different adaptivemethods for combining experts and
othermetalearning approaches such as stacking (Wolpert 1992). In the interest of reproducible
research, ADE is publicly available as an R software package.1 Moreover, all experiments
reported in the paper are also reproducible.2

In summary, the contributions of this paper are:

– ADE, a method for the arbitrage of forecasting experts;
– The introduction of a blocked prequential procedure in the arbitrage approach to obtain

out-of-bag predictions in the training set in order to increase the data used to train the
metalearning models;

– A sequential re-weighting strategy for controlling the redundancy among the output of
the experts using their correlation in a recent window of observations;

– An extensive empirical study encompassing: statistical comparisons with state of the
art approaches; analysis on the different deployment strategies of the proposed method;

1 tsensembler: on CRAN or at https://github.com/vcerqueira/tsensembler.
2 Instructions at: https://github.com/vcerqueira/forecasting_experiments.
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sensitivity analysis on the main parameters of the proposed method; relative scalability
analysis in terms of execution time; and a study on the value of increasing the number of
experts in the ensemble.

We start by reviewing the related work in Sect. 2. Themethodology is addressed in Sect. 3,
where we formalise ADE and our contributions. The experiments and respective results are
presented in Sect. 4, which includes the comparisons to the state of the art. The results are
discussed in Sect. 5. Section 6 concludes the paper.

2 Related work

In this section we review the literature related to our work. First we explain the position of
the proposed method in the literature (Sect. 2.1). Then we briefly describe the state of the art
methods for dynamically combining expert outputs, both using windowing and metalearning
approaches (Sects. 2.2, 2.3). We list their characteristics and limitations as well as highlight
our contributions. Particularly in the latter, we overview previous publications that led to
this work. Finally, we briefly overview the typical approaches for encouraging diversity in
ensemble methods (Sect. 2.4).

2.1 Dynamic combiners

Dynamic ensemble methods for forecasting is a well studied topic in the literature. For exam-
ple, Clemen (1989) presented an annotated bibliography comprising over 200 approaches.

This work is focused on the application of dynamic combination approaches for numer-
ical and univariate time series forecasting tasks. According to the taxonomy presented by
Kuncheva (2004), our approach can be regarded as a dynamic combiner one. This type of
strategies builds the experts in advance. The ensemble then adapts to concept drift by dynam-
ically changing the combination rule.

2.2 Windowing strategies for expert combination

Combining different experts is a difficult task, and several methods have been proposed
to accomplish this. Particularly in forecasting, the simple average of the available experts
(equal weights) has been shown to be a robust combination method (Clemen and Winkler
1986). Its competitive performance relative to approaches using estimated weights is known
in the forecasting literature as the “forecasting combination puzzle” (Genre et al. 2013).
Nonetheless, more sophisticated approaches have been proposed.

Simple averages are sometimes complemented with model selection before aggregation,
also known as trimmed means. For example, Jose and Winkler (2008) propose trimming a
percentage of the worst forecasters in past data, and average the output of the remaining
experts.

One of the most common and successful approaches to combine predictive models in time
dependent data is to weight them according to their performance. Typically the performance
is determined on a window of recent data, or by using some other forgetting mechanism that
promotes the importance of recency. The idea is that recent observations are more similar
to the one we intend to predict, and thus they are considered more relevant. For example,
Newbold and Granger (1974) use this approach for combining forecasters models. More
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recently, van Rijn et al. (2018) proposed a method for data streams classification. As opposed
to fusing experts, they select the best recent performing one to classify the next observation.

AEC is a method for adaptively combining forecasters (Sánchez 2008). It uses an expo-
nential re-weighting strategy to combine forecasters according to their past performance,
including a forgetting factor to give more importance to recent values. Timmermann argues
that for the prediction of stock returns models have only short-lived periods of predictabil-
ity (Timmermann 2008). He proposes an adaptive combination based on the recent R2 of
forecasters. If all models have poor explained variance (low R2) in the recent observations
then the forecast is set to the mean value of those observations. Otherwise, the experts are
combined by averaging their predictions with the arithmetic mean.

In online learning, several strategies have been proposed for aggregating experts advice.
These are typically based on regret minimisation, and have interesting theoretical properties.
Regret is the average error suffered with respect to the best we could have obtained. In this
paper we focus on three of the following approaches: the exponentially weighted average, the
polynomially weighted average, and the fixed share aggregation. For a thorough review of
these methods we refer to the seminal work by Cesa-Bianchi and Lugosi (2006). Zinkevich
(2003) proposed an online convex programming approach based on gradient descent that
also guarantees regret bounds.

The outlined models are related to our work in the sense that they employ adaptive heuris-
tics to combine forecasters. However, these heuristics are incremental or sliding summary
statistics on relative past performance. Our intuition is that these approaches have a short
memory and may fail to capture long-range relationships between changes in the underlying
time series and the performance of the experts efficiently. Conversely, we explore differ-
ences among experts to specialise them across the data space based on a regression analysis.
Moreover, we use a more proactive heuristic that is based on the prediction of relative future
performance of individual forecasters.

2.3 Metalearning strategies for expert combination

Metalearning provides a way for modelling the learning process of a learning algo-
rithm (Brazdil et al. 2008). Several methods use this approach to improve the combination
or selection of models (Pinto et al. 2016; Rossi et al. 2014; Todorovski and Džeroski 2003;
Wolpert 1992).

A popular and successful approach for dynamically combining experts is to applymultiple
regression on the output of the experts. For example, Gaillard and Goude (2015) describe a
setup inwhichRidge regression is used to aggregate experts byminimising the L2-regularised
least-squares. The idea behind these approaches is similar to stacking (Wolpert 1992), a
widely used approach to combine predictive models.

Our proposal follows a metalearning strategy called arbitrating. This approach was intro-
duced before for dynamic selection of classifiers (Ortega et al. 2001). A prediction is made
using a combination of different classifiers that are selected according to their expertise con-
cerning the input data. The expertise of a model is learned using a meta-learner, one for each
available base classifier, which models the confidence of its base counterpart. At runtime,
the classifier with the highest confidence is selected to make a prediction.

The initial indication that arbitration produced interesting results in forecasting was evi-
denced in a case study regarding solar radiation forecasting (Cerqueira et al. 2017). In that
work, the arbitration mechanism was adapted straightforwardly, showing an improvement
over stacking (Wolpert 1992).
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The proposed dynamic ensemble method ADE was first introduced in a previous
work (Cerqueira et al. 2017a). The idea behind arbitration was reworked and applied to time
series forecasting problems from several domains. Several of its drawbacks were addressed,
such as the inefficient use of the available data, by using out-of-bag samples from the training
set; a more robust combination rule by using a committee of recent well performing mod-
els; and the general translation to the time series forecasting tasks, which is fundamentally
different than classification tasks. In this paper we extend and improve the approach. The
main difference is a diversity inducing procedure during expert aggregation that explicitly
models their inter-dependence. On top of this, we significantly enlarge the experiments used
to validate the method. We also provide an in-depth analysis of ADE, to provide more insight
about its characteristics.

2.3.1 Mixture of experts

The proposed dynamic ensemble is related to mixture of experts (Jacobs et al. 1991) (ME), in
the sense that each expert is specialised in a certain region of the input space. Themain differ-
ence toME is theway theweights of the experts are computed.ME estimate theweights using
a gating function. The gating function is typically a neural network with as many output units
as experts and trained using Expectation–Maximisation. Our approach uses a set of arbiters
that predict the loss of the experts. ADE also differs in the training procedure of the experts
and how diversity is encouraged in the ensemble. ME are typically comprised by neural
network experts built incrementally, and the gating function explicitly controls the patterns
each neural network learns according to their relative performance. This results in relatively
independent experts. Conversely, ADE works as a dynamic combiner approach (Kuncheva
2004). Diversity is introduced implicitly by employing a set of heterogeneous experts, which
are trained with the whole set of available observations. During expert aggregation, diversity
is also encouraged by considering the redundancy among the output of the experts.

2.4 Diversity creationmethods

Awide range of contributions exist for encouraging diversity in ensemblemethods. These are
typically based on input manipulation [e.g. bagging (Breiman 1996)], output manipulation
[e.g. Error-CorrectingOutput Coding (Dietterich andBakiri 1991)], ormanipulation of archi-
tectures used to build experts. For a comprehensive read on diversity creation approaches we
refer to the survey by Brown et al. (2005).

We propose a method that encourages diversity during the aggregation of experts. This is
accomplished by manipulating the experts’ weights according to the redundancy of their out-
put. To the best of our knowledge, there is no closely related approach in themachine learning
literature.However, our approach is inspired on the notions ofdiversity in the context informa-
tion retrieval. An example is the seminal approach Maximal Marginal Relevance (Carbonell
and Goldstein 1998). This method is typically used to rank a list of documents to answer a
given query by considering not only the relevance of each document individually, but also
their redundancy to documents already ranked.

3 Arbitrated dynamic ensemble

In this section we formalise ADE. We start by describing the predictive task, and then explain
the different steps of the methodology.

123



Machine Learning (2019) 108:913–944 919

A time series Y is a temporal sequence of values Y = {y1, y2, . . . , yt }, where yi is the
value of Y at time i . We focus on numeric time series, i.e., yi ∈ R, ∀ i ∈ {1, . . . , t}. We
frame the problem of time series forecasting as a regression task. The temporal dependency
is modelled by having the previous observations as attributes in the learning of the experts. In
order to enhance the representation of the time series, this approach can be extended by using
summary statistics on the embedding vectors, or other external domain-specific knowledge.

To be more precise, we use time delay embedding (Takens 1981) to represent Y in an
Euclidean spacewith embedding dimension K . Effectively, we construct a set of observations
which are based on the past K lags of the time series. Each observation is composed of a
feature vector xi ∈ X ⊂ R

K , which denotes the previous K values, and a target vector
yi ∈ Y ⊂ R, which represents the value we want to predict. The objective is to construct a
model f : X → Y, where f denotes the regression function.

The proposed methodology in ADE for time series forecasting settles on the following
three main steps:

– Training of the base-learners: the set of heterogeneous experts that are used to forecast
future values of Y;

– Training the meta-learners: arbiters that model and predict the loss of the experts;
– Predicting yt+1: Combining the output of the experts according to the output of the

arbiters and the correlation among the output of the experts to forecast the next value of
the time series.

3.1 Training the experts

The first step of ADE is to train m individual forecasters. Each M j ,∀ j ∈ {1, . . . ,m} is built
using the available time series Y . The objective is to predict yt+1, the next value of Y . This
is accomplished by having experts build the model f : X → Y.

M is comprised by a set of heterogeneous models, for example decision trees and artifi-
cial neural networks. Heterogeneous models have different inductive biases and assumptions
regarding the process generating the data. Effectively, we expect models to have different
expertise across the time series. Later we will present an approach complementary to ensem-
ble heterogeneity that encourages diversity during the aggregation of the experts (Sect. 3.3.3).

3.2 Training the arbiters

In themetalearning step of ADE the goal is to build models capable of modelling the expertise
of each base-learner across the input space.

Our assumption is that not all models will perform equally well at any given prediction
point. This idea is in accordancewith findings reported in priorwork (Aiolfi andTimmermann
2006). Systematic evidence was found that some models have varying relative performance
over time and that other models are persistently good (or bad) throughout the time series.
Furthermore, in many environments the dynamic concepts have a recurring nature, due to, for
example, seasonality. These findings can be regarded as instances of the No Free Lunch the-
orem presented byWolpert (2002). This theorem essentially states that no learning algorithm
is the most appropriate for all tasks.

In effect, we usemetalearning to dynamically weigh base-learners and adapt the combined
model to changes in the relative performance of the base models, as well as for the presence
of different regimes in the time series.
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Our metalearning approach is based on an arbitrating architecture (Ortega et al. 2001) and
mixture of experts (Jacobs et al. 1991). Specifically, a meta-learner Z j , ∀ j ∈ {1, . . . ,m} is
trained to build the following model:

e ji = f (xi ) (1)

where e ji is the absolute error incurred by M j in an observation (xi , yi ). We formalise the
metalearning problem using the same feature set used by the experts to predict the future
values of the time series.

We perform this regression analysis on a meta-level to understand how the error of a
given model relates to the dynamics and the structure of the time series. Effectively, we
can capitalise on this knowledge by dynamically combining base-learners according to the
expectation of how they will perform.

3.2.1 Blocked prequential for out-of-bag predictions

Typical metalearning approaches for dynamic model selection or combination, only start
the metalearning layer at run-time. This is the case of, for example, the original arbitrating
formulation byOrtega et al. (2001) or the work of Gama andKosina (2014). This is motivated
by the need for unbiased samples to build reliable meta-learners. However, this means that at
the beginning, few observations are available to train the meta-learners, which might result
in under-fitting.

ADE uses the training set to produce out-of-bag predictionswhich are then used to compute
an unbiased estimate of the loss of each base-learner. By retrieving out-of-bag samples from
the training set we are able to significantly increase the amount of data available to the meta-
learners. We hypothesise that this strategy improves the overall performance of the ensemble
by improving the accuracy of each meta-learner.

Weproduce out-of-bag samples by running a blockedprequential procedure (Dawid1984),
a growing window approach. The available embedded time series used for training is split
into b equally-sized and sequential blocks of contiguous observations. In the first iteration,
the first block is used to train the base-learners M and the second is used to test them. Then,
the second block is merged with the first one for training M and the third block is used
for testing. This procedure continues until all blocks are tested (except the first one). In
summary, using out-of-bag samples allows using the available data to train both the experts
(as described above) and the arbiters. This results in a more efficient use of the available
time series, because it is used to fit both the experts and the arbiters. This data efficiency,
and the preservation of the temporal order of observations was the main motivation for using
the blocked prequential with a growing window. The meta-learning phase is described in
Algorithm 1.

3.3 Predicting yt+1

For predicting the next value of the time series, yt+1, ADE combines the output of the experts
M according to the output of the arbiters and the recent correlation among the experts.

3.3.1 Committee of models for prediction

In the original arbitrating architecture the expert with the highest confidence (predicted by
the arbiters) is selected to make a prediction. Our approach is to combine the output of the
experts, as opposed to selecting a single one.
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Algorithm 1: Training arbiters
input : Y
input : M
output : Set of arbiters Z

1 foreach M j in M do
2 ŷ j ← BlockedPrequential(M j , Y , b) // Retrieve out-of-bag predictions of the

experts from the available Y

3 e ji = |yi − ŷ ji | // Expert absolute loss in out-of-bag samples yi ∈ Y

4 Z j ← e ji = f (xi ) // training meta-model Z j

5 end
6 Return Z

As described earlier, the predictive performance of forecasting models has been reported
to vary over a given time series. We address this issue with a committee of models, where we
trim recently poor performing models from the combination rule for an upcoming prediction
[e.g. trimmed means (Jose and Winkler 2008)].

As we explain in Sect. 2, the state of the art approaches for dynamic combination in time
series rely on past performance to quantify the weight of the experts. Specifically, this is
typically used for dynamic selection (e.g. Jose and Winkler 2008) or dynamic combination
(e.g. Newbold and Granger 1974). Here we use this information for dynamic selection.
Formally, we select the Ω% base-learners with lowest mean absolute error in the last λ

observations (ΩM), suspending the remaining ones. The predictions of themeta-level models
(Ω Z ) are used to weigh the selected forecasters.

In summary, if we expect M j to make a large error e j in a given observation relative to
the other experts, we assign it a small weight—or even suspending it—in the final prediction.
Conversely, if we expect M j to incur a small loss relative to its peers, we increase its weight
for the upcoming prediction.

3.3.2 Combining the experts

The weigh of an expert M j in ΩM is determined by a simple transformation of the predicted
loss by the arbiters Ω Z . This is formalised by the following equation:

w
j
t+1 =

scale
(
−ê jt+1

)

∑
j∈Ω M scale

(
−ê jt+1

) (2)

where ê jt+1 is the prediction made by Ω Z j for the absolute loss that ΩM j will incur in

yt+1; w
j
t+1 is the weigh of M

j for observation yt+1; and scale denotes the min–max scaling
function used to transform the vector of predicted loss into a 0–1 scale. The normalisation
with respect to the summation in Eq. 2 is performed so that the combination is convex, i.e.,
the weights sum to 1. The experts that are suspended (Sect. 3.3.1) are simply assigned a
weight of 0.

3.3.3 Sequential re-weighting of experts

Most combination approaches, dynamic ones particularly, weigh experts by maximising
estimates of predictive performance (c.f. Sect. 2). However, in cases where the experts are
highly redundant it is important to model their inter-dependence.
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Brown et al. (2005) stress that the diversity among experts is a critical component for
increasing the ensemble’s predictive performance. To address this problem, Jacobs (1995)
points out that ensemble methods require:

a. “training procedures that result in relatively independent experts”;
b. “aggregation methods that explicitly or implicitly model the dependence among the

experts”.

We address the first issue (a.) implicitly by focusing on heterogeneous ensembles. These
are comprised by experts with different inductive biases. The second issue (b.) is addressed
explicitly by re-weighting the experts at each prediction point according to their recent
correlation.

For clarity, we have at this point and for a given time instance yt+1:

– the output of the experts ŷMt+1 = {ŷ1t+1, . . . , ŷ
m
t+1};

– and their respective weights predicted by the arbiters and scaled accordingly: wM
t+1 =

{w1
t+1, . . . , w

m
t+1} : ∑m

i=1 wi
t+1 = 1.

To model the inter-dependence among experts we frame their aggregation as a ranking
task, in which experts are ranked sequentially by their decreasing weight (the one predicted
to perform better is ranked first). The intuition for the ranking approach is borrowed from
the information retrieval literature. For example, the algorithm Maximal Marginal Rele-
vance (Carbonell and Goldstein 1998) ranks a list of documents to answer a given query by
maximising a function that couples the relevance and redundancy of documents. As such,
the value of the second most relevant document (with respect to a given query) also depends
on its redundancy to the most relevant document. The point is to emphasise the novelty of
information in the document set and enhance their complementarity.

Notwithstanding, time series comprise characteristics that this type of methods need to
cope with, e.g. the variance in relative performance that forecasters show over a time series.
We formalise our idea for the dynamic combination of forecasting experts in Algorithm 2.
We use the correlation among the output of the experts to quantify their redundancy. This
correlation is computed in a window of recent observations to cope with eventual non-
stationarities of time series.

A given expert i is penalised for its correlation to each expert j already ranked. This
penalty is determined by the multiplication of the correlation and the weights of expert i and
expert j (line 8). The penalty formula takes a multiplication because its elements work on one
another: if an expert Mi is fully correlated with other experts already ranked (M j ∈ ΩM j

\ΩMi : w j > wi ), its weight is absorbed by the latter and Mi ’s weight becomes zero.
Conversely, if Mi is completely uncorrelated with its ranked peers, Mi is ranked with its
original weight. In summary, this approach allows the control of redundant information in
the output of the experts. A practical advantage of this method is that it requires no parameter
tuning, except for the correlation function.

The final prediction is the weighted average of the predictions made by the experts ŷ j

with respect to their re-weighted relevance w
′ j
t+1 (Algorithm 3):

ŷt+1 =
∑

j∈Ω M

ŷ j
t+1 · w

′ j
t+1 (3)
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Algorithm 2: Sequential re-weighting of experts

input : predictions of experts in the last λ observations: ŷM
(t−λ):(t+1)

input : weight of experts for t+1: W
output: re-estimated weights W ′

1 W ← Sort(W, decreasing) // sort weights in decreasing order
2 W ′ ← {} // List with final weights
3 W ′

1 ← W1 // First element of W ′ is the weight of the predicted to be
the best expert

4 foreach remaining expert i in W do
5 W ′

i ← Wi
6 foreach expert j in W ′ do
7 cori j ← Cor(ŷi

(t−λ):(t+1), ŷ
j
(t−λ):(t+1)) // Correlation between the

predictions of expert i and expert j in the last λ

observations
8 ηi j ← cori j · W ′

j · W ′
i // penalty that expert j applies to expert i

9 W ′
j ← W ′

j + ηi j

10 W ′
i ← W ′

i − ηi j
11 end
12 end
13 return W ′

Algorithm 3: Forecasting ŷt+1

input : Time series Y up to time t
input : Experts M
input : Arbiters Z
input : Committee ratio Ω

input : Window size λ

output: ŷt+1

1 Ω M ← Subset(M, λ, Ω)

2 Ω Z ← Subset(Z, λ, Ω) // Form the committees Ω M and Ω Z according to
performance on the last λ observations

3 Get loss predictions ê jt+1 from Z j ∈ Ω Z

4 Compute weights w
j
t+1 = scale(−ê j )/

∑
j∈Ω M scale(−ê j )

5 Get predictions ŷ j
(t−λ):(t+1) from M j ∈ Ω M // Predictions of selected experts in

the last λ observations

6 Apply Algorithm 2 to weights: w′ j
t+1 ← SequentialReweight(ŷ j

(t−λ):(t+1), w
j
t+1) // Calibrate

weights according to expert’s correlation

7 Compute final prediction
∑

j :M j∈Ω M
ŷ jt+1 · w

′ j
t+1

4 Experiments

In this section we present the experiments carried out to validate ADE. We start by describ-
ing the overall setup. We compare the proposed method to state of the art approaches for
combining the output of experts. Specifically, we focus on approaches designed to cope with
temporal dependencies. Afterwards, we perform sensitivity analyses to enhance our under-
standing of the components of ADE. To encourage reproducible research, we published the
code used to perform these experiments (c.f. footnote 2).
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The experiments were designed to answer the following research questions:

Q1: How does the performance of the proposed method compares to the performance
of the state-of-the-art methods for time series forecasting tasks and state of the art
methods for combining forecasting models?

Q2: Is it beneficial to use aweighing scheme in our arbitrating strategy instead of selecting
the predicted best expert as originally proposed (Ortega et al. 2001)?

Q3: Is it beneficial to use out-of-bag predictions from the training set to increase the data
used to train the meta-learners?

Q4: How does the performance of ADE vary by the introduction of a committee, where
poor recent base-learners are discarded from the upcoming prediction, as opposed to
weighing all the models?

Q5: What is the impact of the sequential re-weighting procedure in ADE’s performance?
Q6: How does the performance of ADE vary by using different updating strategies for the

base and meta models?
Q7: How sensitive is ADE to the parameters Ω and λ, and to the size of the ensemble in

terms of the number of experts?
Q8: How does it scale in comparison to other state of the art approaches for combination

of forecasters in terms of computational effort?
Q9: What is the impact of the sequential re-weighting procedure in state of the art

approaches for combining experts? Moreover, how does this approach compare with
methods that handle correlation in the feature space (e.g. principal components anal-
ysis)?

4.1 Experimental setup

To address the research questions we used 62 real world time series from several domains.
These are briefly described in Table 1. We limited the time series portfolio by size: we use
time series with size above 750 for having enough data to fit both the experts and the arbiters;
and size below 3000 in the interest of computational efficiency.

To account for trend we applied a KPSS statistical test (Kwiatkowski et al. 1992) to the
data. Time series that are not trend-stationary according to this test are differenced until the
test is passed. This approach is commonly used for trend inclusion in forecasting models, for
example ARIMA. Specifically, we follow the procedure adopted by the automatic forecasting
model auto.arima from the forecast R package (Hyndman 2014). The number of differences
applied to each time series is described in the last column of Table 1.

We estimate the optimal embedding dimension (K ) using the method of False Nearest
Neighbours (Kennel et al. 1992). This method analyses the behaviour of the nearest neigh-
bours as we increase K . According to Kennel et al. (1992), with a low sub-optimal K many
of the nearest neighbours will be false. Then, as we increase K and approach an optimal
embedding dimension those false neighbours disappear. We set the tolerance false nearest
neighbours to 1%. The embedding dimension estimated for each series is shown in Table 1.

The feature set used by the forecasters M includes the previous K values (embedding
vector), together with the following characteristics computed in each embedding vector:

– Local trend, estimated according to the ratio between the standard deviation of the embed-
ding vector and the standard deviation of the differenced embedding vectors;

– Skewness, for measuring the symmetry of the distribution of the embedding vectors;
– Mean, as a measure of centrality of the embedding vectors;
– Standard deviation, as a dispersion metric;
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Table 1 Datasets and respective summary

ID Time series Data source Data characteristics Size K I

1 Rotunda AEP Porto water
consumption from
different locations
in the city of
Porto (Cerqueira
et al. 2017a)

Half-hourly values
from Nov. 11, 2015
to Jan. 11, 2016

3000 30 0

2 Preciosa mar 3000 9 1

3 Amial 3000 11 0

4 Global
horizontal
radiation

Solar radiation moni-
toring (Cerqueira
et al. 2017a)

Hourly values from
Apr. 25, 2016 to
Aug. 25, 2016

3000 23 1

5 Direct normal
radiation

3000 19 1

6 Diffuse
horizontal
radiation

3000 18 1

7 Average wind
speed

3000 10 1

8 Humidity Bike
sharing (Cerqueira
et al. 2017a)

Hourly values from
Jan. 1, 2011

1338 11 0

9 Windspeed Mar. 01, 2011 1338 12 0

10 Total bike
rentals

1338 8 0

11 AeroStock 1 Stock price values
from different
aerospace
companies
(Cerqueira et al.
2017a)

Daily stock prices
from January 1988
through October
1991

949 6 1

12 AeroStock 2 949 13 1

13 AeroStock 3 949 7 1

14 AeroStock 4 949 8 1

15 AeroStock 5 949 6 1

16 AeroStock 6 949 10 1

17 AeroStock 7 949 8 1

18 AeroStock 8 949 8 1

19 AeroStock 9 949 9 1

20 AeroStock 10 949 8 1

21 CO.GT Air quality indicators
in an Italian city
(Lichman 2013)

Hourly values from
Mar. 10, 2004 to
Apr. 04 2005

3000 30 1

22 PT08.S1.CO 3000 8 1

23 NMHC.GT 3000 10 1

24 C6H6.GT 3000 13 0

25 PT08.S2.NMHC 3000 9 0
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Table 1 continued

ID Time series Data source Data characteristics Size K I

26 NOx.GT 3000 10 1

27 PT08.S3.NOx 3000 10 1

28 NO2.GT 3000 30 1

29 PT08.S4.NO2 3000 8 0

30 PT08.S5.O3 3000 8 0

31 Temperature 3000 8 1

32 RH 3000 23 1

33 Humidity 3000 10 1

34 Electricity
total load

Hospital energy
loads (Cerqueira
et al. 2017a)

Hourly values from
Jan. 1, 2016 to Mar.
25, 2016

3000 19 0

35 Equipment
load

3000 30 0

36 Gas energy 3000 10 1

37 Gas heat
energy

3000 13 1

38 Water heater
Energy

3000 30 0

39 Total demand Australian electricity
(Koprinska et al.
2011)

Half-hourly values
from Jan. 1, 1999 to
Mar. 1, 1999

2833 6 0

40 Recommended
retail price

2833 19 0

41 Sea level
pressure

Ozone level detection
(Lichman 2013)

Daily values from Jan.
2, 1998 to Dec. 31,
2004

2534 9 0

42 Geo-potential
height

2534 7 0

43 K Index 2534 7 0

44 Flow of
Vatnsdalsa
river

Data
market (Hyndman
2017)

Daily, from Jan. 1,
1972 to Dec. 31,
1974

1095 11 0

45 Rainfall in
Melbourne

Daily, from from 1981
to 1990

3000 29 0

46 Foreign
exchange
rates

Daily, from Dec. 31,
1979 to Dec. 31,
1998

3000 6 1

47 Max.
temperatures
in
Melbourne

Daily, from from 1981
to 1990

3000 7 0

48 Min.
temperatures
in
Melbourne

Daily, from from 1981
to 1990

3000 6 0
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Table 1 continued

ID Time series Data source Data characteristics Size K I

49 Precipitation
in River
Hirnant

Half-hourly, from
Nov. 1, 1972 to Dec.
31, 1972

2928 6 1

50 IBM common
stock closing
prices

Daily, from Jan. 2,
1962 to Dec. 31,
1965

1008 10 1

51 Internet traffic
data I

Hourly, from Jun. 7,
2005 to Jul. 31,
2005

1231 10 0

52 Internet traffic
data II

Hourly, from Nov. 19,
2004 to Jan. 27,
2005

1657 11 1

53 Internet traffic
data III

from Nov. 19, 2004 to
Jan. 27, 2005—data
collected at 5min
intervals

3000 6 1

54 Flow of
Jokulsa
Eystri river

Daily, from Jan. 1,
1972 to Dec. 31,
1974

1096 21 0

55 Flow of O.
Brocket

Daily, from Jan. 1,
1988 to Dec. 31,
1991

1461 6 1

56 Flow of
Saugeen
river I

Daily, from Jan. 1,
1915 to Dec. 31,
1979

1400 6 0

57 Flow of
Saugeen
river II

Daily, from Jan. 1,
1988 to Dec. 31,
1991

3000 30 0

58 Flow of Fisher
River

Daily, from Jan. 1,
1974 to Dec. 31,
1991

1461 6 0

59 No. of Births
in Quebec

Daily, from Jan. 1,
1977 to Dec. 31,
1990

3000 6 1

60 Precipitation
in O.
Brocket

Daily, from Jan. 1,
1988 to Dec. 31,
1991

1461 29 0

61 Min.
temperature

Porto
weather (Cerqueira
et al. 2017a)

Daily values from Jan.
1, 2010 to Dec. 28,
2013

1456 8 0

62 Max.
temperature

1456 10 0

– Serial correlation, estimated using a Box-Pierce test statistic;
– Long-range dependence, using a Hurst exponent estimation with wavelet transform;
– Chaos, using the maximum Lyapunov exponent to measure the level of chaos in the

system.

These statistics are commonly used to summarise the overall structure of time series (Wang
et al. 2009). The metalearning models use the same feature set used by the base forecasters.
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Available Window

p

Trainingp Testp
Y

Fig. 2 Example of one iteration of the repeated holdout procedure. A point p is chosen from the available
window. Then, the previous 50% of observations are used for training, while the subsequent 25% observations
are used for testing

The final representation of the time series is exemplified in the following matrix:

Y[n,K ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1 y2 . . . yK−1 yK Strend1 . . . Schaos1 yK+1
...

...
...

...
...

...
...

...
...

yi−K+1 yi−K+2 . . . yi−1 yi Strendi . . . Schaosi yi+1
...

...
...

...
...

...
...

...
...

yn−K+1 yn−K+2 . . . yn−1 yn Strendn . . . Schaosn yn+1

⎤
⎥⎥⎥⎥⎥⎥⎦

Taking the first row of the matrix as an example, the target value is yK+1, while the
attributes are the previous K values {y1, . . . , yK } along with the above-mentioned statistics
{Strend , . . . , Schaos}. In the meta-level, the target value is replaced by the absolute loss of a
predictive model in that observation.

4.1.1 Evaluation procedure

The methods included in the experiments were evaluated using the root mean squared error
(RMSE). A repeated holdout procedure in 15 testing periods was used as an estimation
method. This consists in repeating a learning plus testing cycle 15 times using different
but overlapping observations. This approach has been shown to provide robust performance
estimates in time series forecasting tasks (Cerqueira et al. 2017b). In our setup, each repetition
uses 50% of the time series size t for training, while the subsequent 25% observations are
used for testing. The window of used observations was chosen randomly following the idea
of Monte Carlo approximation. This process is illustrated in Fig. 2. A point p is randomly
chosen from the the available window (constrained by the training and testing sizes). This
point then marks the end of the training set, and the start of the testing set.

4.2 Ensemble setup and baselines

The set M of experts forming the ensemble are summarised in Table 2. Different parameter
settings are used for each of the individual learners, adding up to 50 base models. The
parameters that are not specified were set with default values or are automatically tuned.
This choice of number of experts will be analysed in Sect. 4.4.3.

As exploratory analysis, we show in Fig. 3 the distribution of the rank of each expert
across the 62 problems. A rank of 1 means that the respective model was the best performing
one in a given dataset. In the interest of readability, the legend describing the experts only
shows the respective ID. Generally, the range of the distribution of rank is large, and even
the experts with low median rank are among the best in some of the time series problems.
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Table 2 Summary of the experts

ID Algorithm Parameter Value

SVR Support vector regr. (Karatzoglou
et al. 2004)

Kernel {Linear, RBF Polynomial, Laplace}

Cost {1}

ε {0.1}

MARS Multivar. A. R. splines (Milborrow
2012)

Degree {1, 3}

No. terms {7, 15}

Forward thresh. {0.001}

RF Random forest (Wright 2015) No. trees {100, 250, 500}

PPR Proj. pursuit regr. (R Core and Team
2013)

No. terms {2, 5}

Method {Super smoother, spline}

RBR Rule-based regr. (Kuhn et al. 2014) No. iterations {10, 25, 50, 100}

GBR Generalized boosted regr. (Ridgeway
2015)

Depth {5, 10}

Distribution {Gaussian, Laplace}

No. trees {500, 1000}

Learning rate {0.1}

MLP Multi-layer perceptron (Venables and
Ripley 2002)

Hidden units {3, 5, 7, 10, 15, 25}

Decay {0.01}

GLM Generalised linear regr. (Friedman
et al. 2010)

Penalty mixing {0, 0.2, 0.4, 0.6, 0.8, 1}

GP Gaussian processes (Karatzoglou
et al. 2004)

Kernel {Linear, RBF, Polynomial, Laplace}

Tolerance {0.001, 0.01}

PCR Principal comp. regr. (Mevik et al.
2016)

Default –

PLS Partial least regr. (Mevik et al. 2016) Method {Kernel, SIMPLS}

ARIMA ARIMA (Hyndman 2014) Auto –

ETS Exp. smoothing (Hyndman 2014; De
Livera et al. 2011)

Method {ETS, TBATS}

The rule-based model RBR, a variant of Quinlan’s model tree, presents a remarkable rank
distribution.

We use a Random Forest as meta-learner. The blocked prequential procedure used to
obtain out-of-bag samples was run with 10 folds (b = 10). The committee for each prediction
(Sect. 3.3.1) contains 50% of the forecasters with best performance in the last 50 observations
(Ω and λ values are set to 50). We suspend only half the models in the interest of keeping the
combined model readily adaptable to changes in the environment. An average performing
modelmay rapidly become important and the combinedmodel should be able to capture these
situations.By settingλ to 50we strive for estimates of recent performance that renders a robust
committee. The sensitivity of ADE to different values of Ω and λ is analysed in Sect. 4.4.2.
We used Pearson’s method as the correlation function for the sequential re-weighting of
experts (Sect. 3.3.3).
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Fig. 3 Distribution of rank of the base models across the 62 problems

We compare the performance of ADE with the following approaches:

Stacking: An adaptation of stacking (Wolpert 1992) for times series, where a
meta-model is learned using the base-level predictions as attributes.
To preserve the temporal order of observations, the out-of-bag pre-
dictions used to train the meta-learner (a random forest) are obtained
using a blocked prequential procedure (c.f. Sect. 3.2.1). Different
strategies for training the meta-learner (e.g. holdout) were tested and
blocked prequential presented the best results;

Arbitrating: An approach following the original arbitrating method presented
by Ortega et al. (2001), c.f. Sect. 2.3;

Simple: The approach inwhich the available experts are simply averaged using
an arithmetic mean (Timmermann 2006);

SimpleTrim: Simple averagewithmodel selection:Ω%of the best past performing
models are selected and aggregated with a simple average;

LossTrain: Weighted static combination of experts, in which the weights are set
according to the performance of experts in the training set;

BestTrain: An approach that selects the model with best performance in the
training data to predict all the test set;

WindowLoss: Weighted adaptive combination of experts. Theweights are computed
according to the performance of the experts in the last λ observa-
tions (Newbold and Granger 1974);

Blast: Similar to WindowLoss, but selects the best expert in the last λ

observations for prediction. van Rijn et al. (2018) showed its compet-
itiveness using streaming data;

AEC: The adaptive combination procedure AEC (Sánchez 2008), c.f.
Sect. 2.2;

ERP: The adaptive combination procedure proposed by Timmermann
(2008), c.f. Sect. 2.2;

EWA: A forecast combination approach based on an exponentially weighted
average—we refer to the seminal work by Cesa-Bianchi and Lugosi
for a comprehensive description and theoretical properties (Cesa-
Bianchi and Lugosi 2006, Section 2.1);
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FixedShare: The fixed share approach due to Herbster andWarmuth (1998), which
is designed for tracking the best expert across a time series (Cesa-
Bianchi and Lugosi 2006, Section 5.2);

MLpol: The polinomially weighted average forecast combination (Cesa-
Bianchi and Lugosi 2003). See Cesa-Bianchi and Lugosi for a
comprehensive description and theoretical properties (Cesa-Bianchi
and Lugosi 2006, Section 2.1);

OGD: An approach based on online gradient descent that provides theoret-
ical loss bound guarantees (Zinkevich 2003);

ARIMA: A state-of-the-art method for time series forecasting. We use the
implementation provided in the forecast R package (Hyndman 2014),
which automatically tunes ARIMA to an optimal parameter setting.

Naive Baseline that uses the value of the previous observation (yt ) for pre-
dicting yt+1;

SeasonalNaive: Baseline that uses the value of the observation from the previous
seasonal period for predicting yt+1 (Hyndman 2014). Particularly,
for daily time series we use the value from the previous week, and
for hourly time series we use the value from the day before;

ExpSmoothing: The exponential smoothing state space model typically used for fore-
casting (Hyndman 2014).

For the approaches EWA, MLpol, FixedShare, and OGD, we used the software package
opera (Gaillard and Goude 2016).
The following variants of ADE were tested:

ADE-selectbest: A variant of ADE inwhich at each time point the bestmodel is selected
to make a prediction. Here best is the one with lowest predicted loss.
This is in accordancewith the original arbitrating architecture (Ortega
et al. 2001);

ADE-allmodels: A variant of ADE, but without the formation of a committee. In this
case, all forecasting models are weighed according to their expertise
in the input data;

ADE-noreweight: Avariant of ADE inwhich there is no reweight of the experts according
to the correlation of their predictions (Sect. 3.3.3);

ADE-v0: The preliminary version of ADE (Cerqueira et al. 2017a). Besides the
re-weighting of experts, this approach uses a linear transformation of
the output of the arbiters, instead of the softmax function previously
proposed (Cerqueira et al. 2017a);

ADE-vanilla: A baseline variant of ADE with a simpler weighting approach: the
error (ŷ − y) predicted by arbiters is simply added to the output of
the respective expert. The final prediction is computed according to
the average of the shifted output of experts.

4.3 Results

We evaluate the results of the experiments frommultiple perspectives. This includes a formal
evaluation according to theBayesian analysis described byBenavoli et al. (2017). Particularly,
we employed the Bayesian correlated t-test to compare pairs of models in a single problem,
and the Bayes sign test to compare pairs of methods across multiple problems. We define
the region of practical equivalence (Benavoli et al. 2017) (ROPE) to be the interval [− 0.01,
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Fig. 5 Average rank and respective standard deviation of ADE and its variants

0.01]. Essentially, this means that two methods show indistinguishable performance if the
difference in performance between them falls within this interval. For a thorough read on
Bayesian analysis for comparing predictive models we refer to the work by Benavoli et al.
(2017). In this Bayesian analysis of the results we make a small change to the performance
metric. Since RMSE varies according to scale, we normalise this value relative to the RMSE
of the Simple aggregation approach, which is a standard forecast combination baseline. To
be more precise, for each aggregation method Agg we compute the following value:

nRMSE(Agg) = RMSE(Agg)/RMSE(Simple)

Figures 4 and 5 represent the average rank, and respective standard deviation, of ADE
and its variants, state of the art approaches for forecast combination, and other typical fore-
casting baselines. Figure 6 shows the log percentual difference in RMSE of ADE relative to
other forecasting approaches. For this specific analysis the initial outliers in the results were
removed for a better visualisation of the difference in performance. Figure 7 show the results
of the Bayes sign test. This illustrates the proportion of probability that ADE wins, draws
(result within the ROPE), or loses with each respective method. Table 3 presents the paired
comparisons between the proposed method and all other approaches using the Bayesian cor-
related t-test. The numbers represent wins, draws, and losses of the proposed method. The
numbers in parenthesis represent wins/draws/losses with probability above 95%.
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4.3.1 Comparing ADE to the state of the art approaches

ADE presents the best average rank relative to state of the art aggregation methods. This value
is considerably better compared to widely used approaches, includingStacking,Simple,
or WindowLoss. From the numbers of Table 3, ADE wins in most of the problems against
other approaches, most of the times in a considerable way (i.e., with probability above 95%).
Among the combination approaches, BestTrain presents one of the lowest average ranks,
which suggests that the combination of different experts is worthwhile in terms of predictive
performance. The simple average aggregation coupled with model selection leads to an
interesting average rank, which is only topped by that of ADE. These results are corroborated
by the outcome of the Bayes sign test, which suggests that ADE has an higher probability of
winning compared to each other approach.

Figure 6 is useful for visualising themagnitude in the difference in predictive performance,
something which average ranks are blind to. The distribution of the percentual difference
varies according to the model under comparison. In general, ADE shows a reasonable differ-
ence when compared with most of the other approaches.

These results answer the research questionQ1 regarding the performance of ADE relative
to the state of the art approaches for combining forecasting experts.
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Table 3 Paired comparisons
between ADE and the baselines in
the 62 time series

Method ADE loses ADE draws ADE wins

Stacking 12 (3) 16 (2) 34 (13)

Arbitrating 1 (0) 2 (0) 59 (41)

Simple 3 (1) 24 (17) 35 (24)

SimpleTrim 4 (1) 45 (32) 13 (10)

LossTrain 3 (1) 21 (8) 38 (25)

WindowLoss 3 (2) 35 (26) 24 (19)

Blast 1 (0) 2 (0) 59 (42)

AEC 0 (0) 6 (4) 56 (47)

ERP 8 (1) 21 (8) 33 (23)

BestTrain 3 (0) 6 (0) 53 (42)

EWA 0 (0) 23 (8) 39 (9)

FixedShare 0 (0) 6 (2) 56 (27)

MLpol 5 (2) 43 (26) 14 (2)

OGD 1 (0) 23 (8) 38 (19)

ARIMA 8 (5) 17 (7) 37 (33)

Naive 0 (0) 0 (0) 62 (61)

SeasonalNaive 0 (0) 0 (0) 62 (62)

ExpSmoothing 6 (5) 10 (4) 46 (45)

ADE-selectbest 1 (1) 11 (2) 50 (24)

ADE-allmodels 3 (1) 34 (22) 25 (16)

ADE-noreweight 1 (0) 53 (47) 8 (6)

ADE-v0 1 (1) 46 (31) 15 (9)

ADE-vanilla 5 (1) 2 (0) 55 (34)

Number in parenthesis represent a probability of win/draw/loss above
95% according to the Bayesian correlated t-test

Relative to the original arbitrating architecture, denoted as Arbitrating, the proposed
method shows a considerable improvement, which results in a much better average rank.
This proves that the introduced components are fundamental for the achieved performance,
which answers question Q2.

4.3.2 Comparing ADE to its variants

ADE shows a consistent advantage over the performance of ADE-allmodels (Q4). This
suggests that indeed it is worthwhile to prune the ensemble for each prediction (as opposed
to combining all the forecasters). ADE’s performance is also considerably better relative to
ADE-selectbest, which gives evidence for the hypothesis that the combination of experts
(as opposed to selection) provides better results (Q3).ADE is also superior toADE-vanilla,
which bypasses the weighting scheme, directly adjusting the output of the experts according
to the predictions of the arbiters.

ADE shows a consistent improvement over the variant that does not perform a sequential
re-weighting of the experts according to recent correlation (Sect. 3.3.3) (Q5). The magnitude
of the difference in performance is small (Fig. 6), which is corroborated by the high number
of draws shown in Table 3. However, it is important to note that the sequential re-weighting
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method does not generally compromise performance (only one loss in 62 problems), and
improves it several times. Finally, ADE also shows a systematic improvement over its pre-
liminary version (Cerqueira et al. 2017a). Besides not using the sequential re-weighting
approach, ADE_v0 aggregates the output of the experts using a softmax function. We tested
this approach in the experimental setup of this work and found that it does not improve the
results over a linear transformation.

4.4 Further analyses of ADE

Following the comparison of ADE with the state of the art, in this section we provide a more
detailed analysis of its workflow. The goal is to enhance our understanding of how themethod
works. This analysis encompasses: (1) an analysis on the different possible deployment
strategies; (2) a sensitivity analysis on the parameters Ω and λ; (3) a scalability analysis in
terms of relative computational time; (4) a study on the impact of adding additional experts;
and (5) additional analysis of the sequential re-weighting method. If not stated otherwise the
experimental setup is the same as described previously.

4.4.1 Analyzing training strategies

In this section we address the research questions Q4 and Q6. In a dynamic environment it
is common to update the model over time, either online or in chunks of observations. Time-
dependent data is prone to changes in the underlying distribution and continuous training of
models ensures that one has an up-to-date model. Since ADE settles on two layers of models
we analysed different approaches for updating these and study their implications in terms of
predictive performance.

In the main experiments, ADE is trained using only the training data. To understand if and
how should ADE be updated over time we tested the following strategies:

M0_Z0: both experts (M) and arbiters (Z) are trained in the training set and not
updated during test time (ADE as reported in the main experiments);

M0_Z1: M is trained only in the training data but Z is re-trained every �

observations.
M1_Z0: M is re-trained every � observations but Z is trained only in the

training data.
M1_Z1: Both M and Z are re-trained every � observations, which is partic-

ularly interesting if the models in M are typical online methods (e.g.
ARIMA);

ADE-runtime: A variant of ADE in which there is no blocked prequential procedure
to obtain out-of-bag samples to increase the data provided to themeta-
learners. In this scenario, the arbiters are trained in data obtained only
at run-time every � observations, which is also in accordance with
the original arbitrating strategy and other metalearning approaches
used in time-dependent scenarios (Gama and Kosina 2014). M is fit
only in the training data.

We set � to 100. In the interest of robustness, this analysis was carried out using the
time series of size 3000 (33 datasets—see Table 1). Since the predictive models are updated
frequently, in this particular analysis we settled for a simple holdout estimation procedure,
where the training consists in the initial 70% of the data. The test set is comprised by the
remaining 30% observations.
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Fig. 8 Average rank and respective standard deviation of ADE’s deployment strategies

The results are presented in Fig. 8, with a barplot representing the average rank and
respective standard deviation of each deployment strategy.

ADE (also denoted as M0_Z0 in this particular analysis) shows a better average rank
relative to ADE-runtime, which suggests that it is better to get out-of-bag predictions
from the available data to improve the fit of the meta-learners.

The results also suggest that updating the experts and the arbiters at run-time is better
than not updating them. This outcome is expected due to the eventual presence of concept
drift (Gama et al. 2014). Particularly, the M1_Z1 approach presents the best average rank.
Although the difference in average rank is negligible, the results also suggest that updating
the experts and not updating the arbiters (M1_Z0) renders a better average rank than the
inverted strategy (M0_Z1).

4.4.2 Sensitivity analysis onÄ and �

In this and the next subsection we answer the research question Q7 regarding the sensitivity
analysis of ADE. Besides the setup of experts and arbiters, ADE has two main parameters:Ω ,
which represents the ratio of experts selected at each time step for forecasting; and λ, which
denotes the window size used to compute the performance of the experts (for selecting which
ones to arbitrate).

To some extent, these parameters are dependent not only on the ensemble com-
position, but also on the data itself. In this section we briefly analyse how the per-
formance of ADE varies as the values of the parameters Ω and λ change. We con-
sidered ADE with λ = {3, 5, 10, 15, 25, 50, 60, 75, 100, 150, 300, 450, 600} and Ω =
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (values chosen arbitrarily). This renders a total of
117 variants of ADE. This analysis was carried out using the 33 time series of size 3000.

The results are shown in Fig. 9. The graphic illustrates two heatmaps. These relate the
average rank (left heatmap) and respective standard deviation (right heatmap) of each (Ω , λ)
combination across the 33 datasets. Higher average rank (i.e. worse performance) and higher
rank standard deviation are denoted by darker tiles.

Regarding Ω , the best performing values are the ones in the middle of the searched
distribution. In principle, this parameter depends to a great extent on the number of experts
and their predictive ability. The results also suggest that, unless for extremely low λ values,
fixing Ω and varying λ renders a relatively stable average rank.

The heatmap in the right side suggests that the (Ω , λ) combinations with lowest rank
standard deviation are in the middle of the searched distributions.
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Fig. 9 Heatmaps illustrating the average rank (left) and respective standard deviation (right) of ADE for varying
Ω and λ parameters. Darker tiles mean higher values

In principle and in practice, varying the value of λ follows the stability-plasticity
dilemma (Carpenter et al. 1991): small values of λ (i.e. small window of recent observations)
lead to greater reactiveness, but also makes the model susceptible to outliers. Conversely,
higher values lead to greater stability, while losing some responsiveness and possibly con-
taining outdated information.

4.4.3 Value of additional experts

In the experiments presented in the previous sections ADE was employed with 50 experts
(Table 2). In this section we analyse the sensitivity of ADE to different ensemble com-
positions. Particularly, we tested ensembles with sizes from 5 to 100 by multiples of 5:
Q = {5, 10, 15,…, 95, 100} , rendering a total of 20 different possible ensemble sizes for
analysis.

We estimate the predictive performance of each composition using aMonte Carlo approx-
imation. Specifically, for each Monte Carlo repetition and for each considered size q ∈ Q,
we sampled without replacement q experts from a pool of 100, and compute the performance
of ADE with this configuration. Afterwards, we measure the relative performance of each
size (averaged across 30 Monte Carlo simulations) with respect to the performance obtained
when using the complete pool of 100 experts.We tested in 30Monte Carlo repetition to obtain
robust estimates of performance. The pool of 100 experts was created by adding different
values to the parameters described in Table 2.

The result of this analysis is presented in Fig. 10. Generally, including more experts in
the ensemble leads to a better performance, and closer to that of the ensemble with 100
models. However, the difference becomes negligible for values above 50. The uncertainty in
performance is represented by the vertical bars and is computed according to the standard
deviation across the Monte Carlo repetitions. This value also becomes increasingly small as
more base models are included.
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Fig. 10 Average percentual difference in RMSE, and respective standard deviation, of ADE with different
ensemble size compositions up to 100 models relative to ADE with 100 models
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Fig. 11 Log computational time spent by ADE relative to ARIMA and SimpleTrim approaches across the
62 problems

4.4.4 Scalability analysis

In the previous sections we have analysed ADE in terms of predictive performance. In this
section we analyse ADE in terms of computation time. To accomplish this we measure the
time spent in fitting ADE and using it to predict the test set. We use the time spent by ARIMA
and SimpleTrim as references. The first is a state of the art approach to forecasting, while
the second is the aggregation approach with closest average rank to ADE. We computed the
time spent by ADE relative to the other two approaches across the 62 time series.

The results are presented in Fig. 11 as boxplots. On all problems, ADE takes more time
to run than SimpleTrim. The difference of this method to ADE is mostly driven by the
fitting and predictions of the arbiters. As expected, ADE also takes more time than ARIMA.
Being a single model (as opposed to an ensemble), ARIMA has considerable less storage
requirements when compared to ADE.

In summary, ADE scales worse than both approaches. Although omitted, it also takes more
time than the remaining state of the art approaches used earlier (Q8).

4.4.5 Further analyses of the sequential re-weighting procedure

In Sect. 3.3.3 we presented an approach for handling the inter-dependencies among experts
during their aggregation. The core arbitrage approach does not explicitly model the inter-
dependencies among experts and this approach was designed to overcome this limitation.
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Table 4 Paired comparisons showing the impact of the sequential re-weighting approach in state of the art
methods

Method Without re-weight wins Draw With re-weight wins

WindowLoss 4 (2) 31 (24) 27 (24)

AEC 32 (22) 25 (18) 5 (1)

EWA 33 (14) 25 (21) 4 (0)

FixedShare 41 (24) 20 (18) 1 (0)

MLpol 27 (9) 27 (20) 8 (2)

OGD 21 (4) 26 (16) 14 (5)

Particularly, in the previous section we provided evidence of the benefits of the sequential
re-weighting approach when applying it to ADE. Particularly, the results suggest that the
magnitude of the impact is not substantial. Notwithstanding, applying this method does not
generally decrease performance and improves it several times.

In this section we analyse the sequential re-weighting method from two more different
perspectives, according to research question Q9. First, we study the impact of applying
this procedure to other state of the art approaches for dynamic combination of forecast-
ing experts. In the interest of fairness we focused this analysis only on approaches which
perform dynamic expert combination using estimated weights. Second, and focusing on
ADE, we compare sequential re-weighting of experts with approaches that handle cor-
relation in the feature space. Specifically and before training the experts, two different
approaches are tested: (1) attributes with correlation above 95% with other features are
removed (ADE-corr-noreweight); (2) principal components analysis is applied to the
data, keeping 95% of the variance (ADE-pca-noreweight). The value 95% was chosen
arbitrarily. In this analysis we also study ADE-corr and ADE-pca, where ADE is applied
with sequential re-weighting and the methods (1) and (2) described above.

The results of the first analysis are reported in Table 4, where each approach in the first
column is compared with itself when using the sequential re-weighting approach. Similarly
to Table 3, this table shows paired comparisons of the respective method with and without
the application of the sequential re-weighting method. In parenthesis are denoted the results
that happen with at least 95% probability according to the Bayesian correlated t-test.

Besides ADE, the results suggest that the approach is also beneficial to WindowLoss.
However, when applied to the other tested approaches its impact vanishes and is often
decreases the predictive performance.

Figure 12 shows the results of the second analysis. ADE shows the best average rank
across the tested approaches. The average ranks suggests that, applying the sequential re-
weighting procedure improves the predictive performance in the three variants of ADE. Even
when accounting for correlation in feature space, the sequential re-weighting approach still
improves the average rank during expert aggregation.

5 Discussion and future work

In this section we discuss the presented results.We start by addressing the limitations of ADE,
where we also outline possible solutions to those shortcomings. Then we overview future
work regarding ADE.
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Fig. 12 Average rank and respective standard deviation of ADE and its variants

5.1 On concept drift

Some of the design decisions behind ADE are based on prior work regarding the variance in
relative performance of forecasting models over a time series (Aiolfi and Timmermann 2006)
and with potential recurring structures present in the time series. However, there are cases
in which time series change into new concepts and both the experts and arbiters may get
outdated. Although we do not explicitly cover these scenarios, a possible strategy to address
this issue is to track the loss of the ensemble. If its performance decreases beyond some
tolerance new base-learners could be introduced (e.g. Gama and Kosina 2014) or existing
ones re-trained. Since an arbitration approach provides a modular architecture, models can
be added (or removed) as needed. Gama et al. (2014) survey several approaches for concept
drift adaptation that also could be adopted.

5.2 On the sequential re-weighting procedure

In its preliminary version (Cerqueira et al. 2017a) we argued that one of ADE’s limitation
was that it did not directly modelled the inter-dependencies among experts. We address this
issue in this work using a sequential re-weighting procedure that controls the redundancy
among the output of the experts by considering their recent correlation. This approach is
independent from ADE. However, its application with ADE is particularly interesting because
the re-weighting occurs during aggregation and does not withhold ADE’s modularity.

Despite the evidence of its benefits, the sequential re-weighting approach has space for
improvement. Consider the following (rather extreme) example: one expert producing fore-
casts with a determined magnitude systematically below the true value, and another expert
with similar behaviour but with forecasts above the true value. These two experts are highly
correlated but in fact complement themselves greatly. Effectively, using the Pearson’s cor-
relation as a measure of similarity can be a sub-optimal solution in this case. Future work
includes the exploration of better similarity functions. A possibly interesting line of enquiry
is to follow Brown’s work on the study of diversity in classifiers from an information the-
oretic perspective (Brown 2009). Particularly, instead of measuring the redundancy among
experts only according to their outputs, we can also take into consideration the target value,
i.e. conditional redundancy.

Finally, the application of the sequential re-weighting approach to other dynamic aggre-
gation methods does not render the same positive effects as seen when it is applied to ADE.
We plan to study this issue further in future work.
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5.3 On scalability

In the previous sectionwe identified the computational effort required byADE relative to other
approaches as its main limitation. In the future we plan to address this issue, by eventually
adapting the method to a streaming scenario. One possibility is to use a single arbiter (instead
of one arbiter for each expert) designed for multi-target regression, i.e. having a single
regression model that forecasts the errors of all base models, though for ensembles with a
large number of base models this can be cumbersome given the number of target variables
we would have.

5.4 Scope of the experimental setup

From a broad perspective, forecasting can be split into different varieties. In this work we
focus on uni-variate time series, assuming that only the variable of interest is available.

We also center our goal on predicting the next value of the time series, and assume
immediate feedback from the environment. However, in many application domains one is
often interested in predicting multiple steps in the future. Although we do not evaluate the
proposed method in this setting, it can be extended to multi-step forecasting using state of
the art approaches to this effect. We intend to study the application of ADE in these settings
in future work.

Finally, as we describe in Sect. 4.1, we focus on time series with an high sampling fre-
quency, specifically, half-hourly, hourly, and daily data. The main reason for this is because
high sampling frequency is typically associated with more data, which is important for fit-
ting the predictive models. Standard forecasting benchmark data are typically more centered
around low sampling frequency time series, for example theM competition data (Makridakis
et al. 1982).

5.5 Other research lines

We plan to address the previous limitations of ADE by exploring the described potential
solutions. Besides these, there are other interesting open research questions. Specifically, we
will study ways of quantifying and leveraging the uncertainty of the arbiters regarding the
loss that the experts will incur. For example, one could develop an approach in which, when
the uncertainty of the output of the arbiters is high, the weights are smoothed. This could be
accomplished efficiently using, for example, an infinitesimal jackknife (Wager et al. 2014)
(provided random forests are used as arbiters).

We also plan to study the ability of the method, and how it can be adapted, to the timely
detection of anomalies, i.e., activitymonitoring (Fawcett and Provost 1999). Another interest-
ing analysis could be using ADE in a continual learning setup, where instances for a sequence
of tasks are observed over time.

6 Conclusions

In this paper we presented ADE, a dynamic ensemble method. We focused on time series
forecasting problems, where the objective is to predict future values of a sequence of obser-
vations.
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ADE is comprised of a set of forecasting experts pre-trained on the available data. A
metalearning approach is used to dynamically estimate the weight factors of these experts at
run-time. This is accomplished by having a set of arbiters that model the error of each expert
and predict howwell they will perform in future observations. The resulting weights are used
for obtaining the aggregated prediction of the ensemble. This aggregation may temporarily
assign zeroweight to some experts if their current performance is estimated to be too bad. This
suspension decision may be revised in future time steps thus contributing to the robustness
of the approach to regime changes.

We argued that this metalearning approach is useful to better capture recurring changes in
the environment. Particularly, long-range temporal dependencies (e.g. seasonal factors) that
short-memory windowing approaches may fail to grasp efficiently.

Our proposal also includes a sequential re-weighting approach for modelling the inter-
dependencies among experts. Specifically, this approach is designed to control and reduce
the redundancy in the output of the experts during their aggregation. Within the proposed
arbitrage approach we also include a procedure for retrieving out-of-bag observations from
the training set. These are used to fit the arbiters, significantly improving the data efficiency
of the method.

We carried out an extensive empirical study to better characterise the performance of our
proposal. This study has provided clear evidence on the competitiveness of our method in
terms of predictive performance when compared to the state of the art. We also discussed
its limitations and provided guidelines for solving them in future work. The main point for
improvement is the scalability of the method. We plan to address this issue and potentially
adapt ADE to streaming or incremental scenarios.

In the interest of reproducible science all methods are publicly available as an R software
package.
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Brown, G., Wyatt, J. L., & Tiňo, P. (2005). Managing diversity in regression ensembles. Journal of Machine
Learning Research, 6(Sep), 1621–1650.

Carbonell, J., & Goldstein, J. (1998). The use of mmr, diversity-based reranking for reordering documents and
producing summaries (pp. 335–336). ACM.

Carpenter, G. A., Grossberg, S., & Reynolds, J. H. (1991). Artmap: Supervised real-time learning and clas-
sification of nonstationary data by a self-organizing neural network. Neural Networks, 4(5), 565–588.
https://doi.org/10.1016/0893-6080(91)90012-T.

Cerqueira, V., Torgo, L., Pinto, F., & Soares, C. (2017). Arbitrated ensemble for time series forecasting. In
Joint European conference on machine learning and knowledge discovery in databases (pp. 478–494).
Springer.
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